Treatment Options For Massive Rotator Cuff Tears | PhysioActive Talk

Date and Time: April 30 2021, 12:30pm – 2:00pm
Guest Speaker: Dr Desmond Ong, Consultant Orthopaedic/Shoulder Surgeon at Shoulder Elbow Orthopaedic Clinic

Dr Desmond Ong joined our partners at PhysioActive to discuss rotator cuff tears and how they are a common cause of shoulder pain.

Rotator cuff tears become more common with age and can rob many of their ability to do the things they enjoy and their independence in their golden years. Dr Desmond touched on how non-surgical treatment options can improve one’s pain.

Learn how to better care for patients suffering from rotator cuff tears and the various treatment options available and how each option brings its own set of benefits. For more information on rotator cuff tears and the respective treatment options go to https://sportsinortho.com/.

Dr Desmond Ong, Shoulder Elbow Orthopaedic, PhysioActive, Massive Rotator Cuff Tears, Treatment Options, Insight and Evidence

Dr Desmond Ong, Shoulder Elbow Orthopaedic, PhysioActive, Massive Rotator Cuff Tears, Treatment Options

Dr Desmond Ong, Shoulder Elbow Orthopaedic, PhysioActive, Joint Preserving Options, Classic Transfers

Key Hole Surgery

Often when the topic of surgery comes up during the discussion with my patients, the question of how big will my scar be or how many stitches will there be comes up. The pleasant surprise will then commonly be that with current technology, many sports related joint injuries can be treated via small key holes now.

 

New Technology?

Truth is “Minimally Invasive (MIS)”, “Keyhole”, “Bandaid”, “Scope” surgery is not exactly that state of the art nowadays as it has been around for almost a century now and can safely be considered to be the mainstay treatment for most sports injuries.

 

Arthroscopic surgery has been reported since the 1910s but the technology and application greatly took off after the invention of fibre-optic cable when images can be projected into a television monitor. This saves us from having to struggle peering through a small peephole lens. This plus high definition lenses and monitors has made doing such procedures much clearer, easier and thus safer. Afterall, a surgeon should only operate on what he/she can see clearly.

 

So what exactly is KeyHole surgery.

KeyHole or Arthroscopic surgery is a type of orthopedic surgery that utilizes an instrument called an arthroscope which essentially is a lens connected via fibre-optic cable to a monitor. It is so called keyhole or minimally invasive as it can be performed requiring only small incisions, usually around around ¾ of a centimeter. These incisions are called portals. The word arthroscope is from the Greek words meaning “to look at joints.” The arthroscope is made up of a lens and a light source, and is connected to a video camera. The surgeon can view the inside of the joint directly through the arthroscope, or an image may be displayed on a monitor. This image gives the surgeon a clear view of the tissue inside the joint. The surgeon can then use other tiny instruments specially designed for arthroscopic surgery to perform necessary procedures. Arthroscopic surgery can be used as a diagnostic tool, or for therapeutic procedures ranging from easing the pain of arthritis patients to mending torn ligaments. This range from shoulder stabilization, rotator cuff repair, capsular release for frozen shoulder, acromioclavicular joint reconstruction (dislocation of the outermost part of the collar bone which many cyclist suffer from after a fall), tennis elbow release, knee meniscus debridement (clean up)/ repair, ligamentous (anterior and posterior cruciate) reconstruction, hip labral debridement repair. This is on top of the diagnostic arthroscopies we do for the joints and debridement of these joints.

 

Why KeyHole?

 

First I must quantify that although this technique is and can be used for many sports related injuries when all non operative options have been exhausted, it is not for every patient and every condition. In certain situations, trying to struggle through 4 to 5 small holes each around ¾ cm may cause more damage then just doing a simple mini-open procedure with a 3-4cm incision,

Nevertheless, extended exposure of joints during open surgery prolongs recovery and increases pain and risk of complications, such as infection and stiffness. Minimally invasive surgeries, in general, result in less pain and swelling after surgery than open techniques. As a result, arthroscopically treated patients tend to heal faster and begin rehabilitation earlier and, subsequently, return to normal activity and work sooner.

Technically, using a lens also allow surgeons to see certain parts of the joint that would otherwise be inaccessible through a limited mini-open incision as the lens can get into awkward corners of the joint easier.

Arthrocopic surgery has made some previously very long and arduous ones a lot more controlled and straightforward. This allow us to provide our patients a more predictable outcome in terms of results.

In some surgeries, arthroscopic techniques have become mainstays over open procedures like shoulder stabilization surgery, rotator cuff repair, acromioclavicular joint reconstructions, knee meniscus and ligamentous reconstruction. This is to an extend that the open surgery is only reserved for complex or revision (repeat) surgeries.

Another benefit of arthroscopy is that a lot of these procedures can be performed in an day surgery setting which can often reduce cost.

 

So what’s the down side?

As of all surgical procedures, there are risks. Like in all joint surgeries, risks include bleeding into the knee joint, damage to the cartilage, meniscus/labrum, or ligaments in the joint, blood clot in the leg (deep venous thrombosis), injury to a blood vessel or nerve, compartment syndrome when the fluid we use to pump into the joint to work (yes we work in an underwater environment) leaks into the calf area of the leg, infection in the joint and joint stiffness. Unique to arthroscopy, equipment failure accounted for a significant part of the complications. Arthroscopy is a technical procedure requiring a wide range of equipment (camera and monitor, surgical equipment, pump, tourniquet, etc.) that can malfunction or break during a procedure.

Conclusion

Arthroscopy, one of the greatest advances in orthopedic surgery in the 20th century, has been around for a almost a century. It offers a minimally invasive alternative to standard open surgical techniques, which often require extended incisions for adequate joint exposure to the extent that it has become the mainstay for many conditions. Decreased complications, pain, shorter recovery, and the resulting cost savings are proven advantages. Without a doubt, the advances of arthroscopic surgery will allow us to return our patients back to their peak performance a lot faster and with a lot less pain and fuss. With improvements in fibre-optics, lens and monitor technology, it will also allow surgeons to see clearer and as a result do better work for our patients, producing better results and allowing our patients not to have to live with their pain.

Common sports injuries faced by women

Disclaimer: This article first appeared in Shape Magazine as an Interview with Gleneagles

1. What are some of the most common sports injuries faced by women?

Women are increasing involved sports locally and the incidence of sports injury has increased as a result. Common injuries include those affecting the shoulders, elbows, wrists, back, hips, knees, foot and ankle. Different sports places increase stresses in different anatomical parts of the body and thus result in varying injuries. Sports injuries are broadly divided into 2 main groups

  • Traumatic injuries (sprains, muscle pulls, fractures, dislocations etc)
  • Overuse injuries (strains, tendonitis, tendinosis low back pain, etc)

Even in running, looking at the scientific literature, we can see that women indeed do, on the whole, get injured more often than men do.  But the difference is not quite as drastic as popular wisdom might hold—a 2002 study of around two thousand patients at a Vancouver, Canada sports injury clinic found that women represented 54% of injuries, with men taking up the other 46%.  But among some specific injuries, women are at significantly higher risk such as Anterior Cruciate Ligament (ACL) Tears.

2. What musculoskeletal and biological makeup differences between both genders contributes to sports performance and injuries?

There are many factors that attribute to the differences in injuries between the genders. The main reasons include

a. Anatomical Factors

Taking ACL injuries as an example: these factors include pelvis width, Q-angle (the angle between a line connecting a point on the front of the hip bone and the center of the kneecap and another connecting the kneecap and a point on the upper shin-bone), size of the ACL, and size of the intercondylar notch (where the ACL crosses the knee joint). Larger pelvis width, Q angle, smaller ACLs and a smaller intercondylar notch places females at a higher risk.

*  – Q angle is the angle formed by a line drawn from the ASIS to central patella and a second line drawn from central patella to tibial tubercle;
    – an increased Q angle is a risk factor for patellar subluxation;
    – normally Q angle is 14 deg for males and 17 deg for females;
           – Agliettis et. al. Clin. Ortho 1983:
           – 75 normal males:    Q angle = 14 deg (+/- 3)
           – 75 normal females: Q angle = 17 deg (+/- 3)
    – biomechanics of patellofemoral joint are effected by patellar tendon length & the Q angle;

b. Biomechanical/ Neuromuscular factors

Women have been found to have differences in biomechanic movements of the knee seen when pivoting, jumping, and landing — activities that often lead to an ACL injury. There is also a relatively greater imbalance between quadriceps and hamstring muscles (with the quads being stronger in females), which can contribute to knee injuries.

c. Training/ Conditioning factors (doll games vs ball games)

Until recent years, males are involved training actively for competitive sports at an early age compared to females. As such they are physically better conditioned to withstand sports injuries. Hence, boys being involved in ball games as compared to girls being involved in doll games at an earlier age. Nevertheless, the combination of the greater susceptibility and a 10-fold increase in the female sports population since the inception of Title IX in the United States has resulted in a dramatic increase in the number of ACL injuries in females. Locally, increased emphasis in sports and fitness has also allowed us to witness a large increased in the number of females involved in recreational and competitive sports and consequently an increase in the number of injured females.

d. Hormonal factors

Female sex hormones (i.e. oestrogen, progesterone and relaxin) fluctuate radically during the menstrual cycle and are reported to increase ligamentous laxity and decrease neuromuscular performance and, thus, are a possible cause of decreases in both passive and active knee stability in female athletes.

3. Are there certain sports that put women more at risk of injuries than men?

In view of the factors that lead to an increased risk of certain sports injuries, high demand sports involving planting and cutting, jumping with a poor landing, stopping suddenly or changing directions quickly (Soccer, Volleyball, Skiing, Lacrosse, Football, netball etc) can put women at a higher risk of knee sports injuries compared to men. Extrapolating this to other injuries including the shoulder/elbow/hip/ foot and ankle, women may also be at a higher risk of sustaining certain injuries compared to their male counterpart. For shoulder injuries, the combination of not having strong shoulder muscles, including the rotator cuff and periscapular muscles, and having generally supporting tissues that are more lax can lead to instability in the shoulder.

4. What are some sports that put women at an advantage compared to men? How so?

There are some sports where flexibility may play a greater role such as gymnastics where women are at an advantage. Interestingly, women are at a lower risk of hamstring injuries compared to men in a National Collegiate Athletic Association’s (NCAA) Injury Surveillance System (ISS) regarding all hamstring strain and rupture injuries in male and female soccer players between 2004 and 2009. Men were significantly more likely to suffer a hamstring injury during the in-season than women. Men are also more likely to suffer recurrent hamstring injuries.

5. As a member of the medical panel for the upcoming BNP Paribas WTA Final Singapore presented by SC Global, do you foresee any common sports injuries that the professional women tennis players will likely encounter? Perhaps our humid weather and brand new court grounds may play a role in altering their performance?

Tennis injuries are also of 2 broad types:

  • Traumatic injuries (sprains, muscle pulls, fractures, etc) make up about 1/3 of injuries seen in tennis, depending on the age and activity level of the player. Most traumatic injuries occur in the lower extremity. They are not easily prevented, nor are they particularly related to tennis technique.
  • Overuse injuries (strains, tendonitis, tendinosis low back pain, etc) comprise about 2/3 of injuries experienced by tennis players. Overuse injuries occur in all areas of the body, and may be related to technique or to alterations in the athlete’s musculoskeletal system.

Common injuries include tennis elbow, shoulder injuries such as rotator cuff tears, stress fractures, muscle strains, knee ligament strains/ tears, ankle sprains/ ligament tears and also back injuries.

Specific to ACL injuries, tennis players with an ACL deficient knee showed a clear incapacity to play on hard courts, where demanding eccentric deceleration motions occur. Frontal and rotational knee moments are thought to be increased when playing on hard surfaces owing to greater friction between the foot and the ground. Clay courts seem to be a better option for ACL deficient players.

6. What are some common injuries faced by recreational female tennis players?

Similarly, tennis injuries will include both traumatic and overuse ones. However, we do see a larger number of overuse injuries in recreational players. One of the reasons can be because of less consistent technique and form.

7. How can those tennis-related injuries be treated, and avoided?

There are multiple causes for the overuse injuries in tennis, including the need to perform repetitive forceful motions and strokes, inadequate rest and recovery, incorrect tennis specific conditioning, acquired inflexibility, and strength weakness/imbalance. Each injury may have unique causes that must be evaluated to avoid repeated injury, suggest proper conditioning programs, and allow safe return to sport. Because many parts of the tennis player’s body experience high loads on a repetitive basis, the musculoskeletal system must be prepared to withstand these loads. Much research has shown that an athlete cannot just play a sport to get in maximum shape for that sport, so a tennis player’s training plan should include a structured conditioning program that includes more than just playing tennis. Conditioning for tennis requires the exercises to be specific for the demands of tennis, and to be performed in a periodized manner in order to balance the workout load between conditioning and practice/play. As such, the roles of off the court strength training, conditioning, pre-game warming up and post-game stretching are very important.

When injuries occur, depending on the type and severity of injury, a consultation with your doctor will be advised. After a thorough medical examination and appropriate investigations, your doctor can then advise an appropriate management plan which will often include rest, cold compression, pain killers, anti-inflammatory medications, physiotherapy and rehabilitation. Surgery will be considered in cases where non operative management is not suitable.

8. How can a women’s menstrual cycle affect her sports performance? Is there a best and worst time for sports, according to the menstrual cycle?

There are some studies that show there were more injuries than expected in the ovulatory phase of the cycle. In contrast, significantly fewer injuries occurred in the follicular phase. This is postulated to be due to oestrogen and relaxin’s direct effect on collagen metabolism and behaviour.

Oestrogen levels reach their peak during the follicular phase of the menstrual cycle just before ovulation and remain elevated until just before menstruation.

The effect of oestrogen on bone and ligaments include:

  • Inhibition of bone cells that breakdown bone (osteoclasts)
  • Inhibition of the development of new cells that breakdown bone
  • Promotes the survival of cells that build bone (osteoblasts)
  • Promotes the production of collagen in connective tissue including ligaments

Relaxin is produced during pregnancy; and in non-pregnant females during the luteal phase (2nd half) of the cycle. It peaks within 14 days of ovulation.

Effects of relaxin include:

  • Inhibition of collagen production
  • Promotes collagen breakdown

Taking into account the effect of these hormones, you might expect that women would be more vulnerable to injury pre-menstrually or at the beginning of the period when the ligaments would appear to be at their loosest. However, studies have shown inconclusive results. There are some studies that show there were more injuries than expected in the ovulatory phase of the cycle. In contrast, significantly fewer injuries occurred in the follicular phase. However, some have shown a greater than expected percentage of injury mid cycle where you would expect the tissues to be at their stiffest and thickest.

Are Ironwomen more prone to Injury?

Women are very quickly becoming the fastest growing segment of endurance athletes. Studies suggest that women utilize less glycogen and more fat than men in long, lower-intensity exercise such as triathlons/ marathons/ pelotons. This makes female athletes particularly well suited for, and may potentially provide an advantage over men in endurance events. Triathletes are vulnerable to the full spectrum of sports injuries that could be sustained from swimming, cycling or running.

Although acute traumatic injuries can occur during an event or training, most triathletes suffer overuse or overtraining injuries.  Looking at the scientific literature in running, we can see that women indeed do, on the whole, get injured more often than men do.  But the difference is not quite as drastic as popular wisdom might hold—a 2002 study of around two thousand patients at a Vancouver, Canada sports injury clinic found that women represented 54% of injuries, with men taking up the other 46%.  Having said that, among some specific injuries, women are at significantly higher risk such as Anterior Cruciate Ligament (ACL) Tears.

Three main differences exist between the male and female athlete: Anatomical, Physiological and Training considerations.

Anatomical Factors

#1 Bones and joints.
Compared with men, women have shorter and smaller limbs relative to body length. In the athletic disciplines where balance control is very important (eg, gymnastics), shorter stature and wider pelvis give women lower center of gravity, which gives them substantial advantage. However, wider pelvis can produce a condition generally known as “knock-knees” which is a result of an increased Q angle. The Q-angle is the angle between a line connecting a point on the front of the hip bone and the center of the kneecap and another connecting the kneecap and a point on the upper shin-bone. This is known to be a predisposing factor for patellofemoral (knee cap joint) problems.

#2 Muscles
During the puberty, however, because of the influence of the testosterone boys accumulate greater muscle mass. In adults, total cross-sectional area of muscles in women is 60%, compared with 80% in men. As a result, maximal strength measures and maximal power measures are reduced. Although it has been shown that when only muscle quality is concerned, male and female muscle is not different. However, the strength and power differences between the sexes are a function of muscle quantity and not only of their quality.

#3 Ligaments and joints
Female athletes have increased general joint laxity than their male counterparts. It can be due to an increased laxity of the ligaments, tendons and the joint capsule itself. In addition, the lower muscle mass may also decrease the restrains of excessive joint movement in females.

Physiological factors

#1 Hormonal Differences

The predominant hormone affecting muscular and bone development in females is oestrogen and testosterone in males. After the stabilization of hormonal levels during the pubertal years, these hormonal differences results in greater gender differences. Proper oestrogen serum levels are also necessary for women to obtain maximum peak bone mass during the second and third decade. There are some studies that show there were more injuries than expected in the ovulatory phase of the cycle. In contrast, significantly fewer injuries occurred in the follicular phase. This is postulated to be due to oestrogen and relaxin’s direct effect on collagen metabolism and behaviour.

Oestrogen levels reach their peak during the follicular phase of the menstrual cycle just before ovulation and remain elevated until just before menstruation.

The effect of oestrogen on bone and ligaments include:

  • Inhibition of bone cells that breakdown bone (osteoclasts)
  • Inhibition of the development of new cells that breakdown bone
  • Promotes the survival of cells that build bone (osteoblasts)
  • Promotes the production of collagen in connective tissue including ligaments

Relaxin is produced during pregnancy; and in non-pregnant females during the luteal phase (2nd half) of the cycle. It peaks within 14 days of ovulation.

Effects of relaxin include:

  • Inhibition of collagen production
  • Promotes collagen breakdown

Taking into account the effect of these hormones, you might expect that women would be more vulnerable to injury pre-menstrually or at the beginning of the period when the ligaments would appear to be at their loosest. However, studies have shown inconclusive results. There are some studies that show there were more injuries than expected in the ovulatory phase of the cycle. In contrast, significantly fewer injuries occurred in the follicular phase. However, some have shown a greater than expected percentage of injury mid cycle where you would expect the tissues to be at their stiffest and thickest.

 

Training/ Conditioning factors (doll games vs ball games)

Until recent years, males are involved training actively for competitive sports at an early age compared to females. As such they are physically better conditioned to withstand sports injuries. Hence, there was a saying that boys were involved in ball games as compared to girls being involved in doll games at an earlier age. Nevertheless, the combination of the greater susceptibility and a 10-fold increase in the female sports population since the inception of Title IX in the United States has resulted in a dramatic increase in the number of sports injuries in females. Locally, increased emphasis in sports and fitness has also allowed us to witness a large increased in the number of females involved in recreational and competitive sports and consequently an increase in the number of injured females.

Common overuse injuries the ironwoman encounter include

Stress fractures

Stress fractures are relatively common overuse injuries, especially in athletes or military personnel. Although they are not exclusive to female athletes, females in general have a higher incidence of stress fractures and, second, distribution of stress fracture sites seems to differ between genders. Stress fractures result from cumulative repetitive forces insufficient to cause an acute fracture. It has been noted previously that stress fractures occur more frequently in amenorrheic (non-menstruating) than normally-menstruating females. The exact mechanism of the development of stress fractures in amenorrheic women is uncertain and may be partly related to low bone density. Lower-extremity bones are most commonly affected, but stress fractures also occur in non-weight-bearing bones such as upper extremities and ribs. The tibia (lower leg bone) is the most commonly involved site for both men and women, but the fractures of the neck of femur (thigh bone), foot bones, and pelvis are seen more commonly in the female athlete The athlete with stress fracture presents with gradual onset of pain, aggravated by exercise. The hallmark of stress fracture is localized tenderness at the fracture site. The main treatment of stress fractures is rest from the offending athletic activity, a concept known as “relative rest,” and it is usually conducted as a step by step treatment algorithm General conditioning is maintained by exercising other areas of body and partaking alternative training, such as water running, swimming, or cycling. When patients do not respond to conservative treatment, surgical procedure may be advised.

Patellofemoral (knee cap joint) pain syndrome

Patellofemoral pain syndrome (PFPS) is a term used to describe painful but stable patella. It is a very common problem among female runners and cyclists and the increased incidence of PFPS in women compared with male athletes is thought to be related to the anatomical, physiological, biomechanical and conditioning differences between genders. Three major factors contributing to the development of PFPS are lower extremity and patellofemoral malalignment, quadriceps muscle imbalance and/or weakness, and physical overload of patellofemoral joint.  Conservative treatment is effective in most patients. Quadriceps muscle stretches, balanced strengthening, proprioceptive training, hip external rotator strengthening, orthotic devices, and effective bracing will relieve the pain in most of the patients. Only if a comprehensive rehabilitation program of at least 6-month duration fails, surgical treatment should then be considered as the last resort.

Patellar (knee cap) tendinitis – jumper’s knee

Patellar tendinitis (jumper’s knee) is a clinical entity characterized with anterior knee pain and is the most common athletic injury to the knee. Pain is aggravated by excessive strain on the extensor (straightening) system of the knees after numerous jumps or long periods of running. It can also be caused by poor bike fit where the saddle height is too low, resulting a greater knee flexion. Important causative factor was found to be the amount of training (both the amount of time and the amount of mechanical strain placed on the knee) that the athlete habitually carries out. The most common site of tendinitis is around lowest part (inferior pole) of the patella. In very rare cases, continuation of intensive athletic activities, despite the presence of evident symptoms of the disease, leads to a complete rupture of the patellar tendon. Of the numerous treatments available, physiotherapy and correction of technical errors are often efficient.

Iliotibial band friction syndrome

The Ilitotibial band is a thick strip of connective tissue connecting several muscles in the outer thigh to help stabilize the knee. Iliotibial band friction syndrome (ITBFS) is one of the most common overuse injuries in runners. It is caused by many repetitive flexion and extension movements of the knee, during which rubbing of the band against lateral femoral epicondyle (outermost point of the thigh bone at the knee) occurs. Friction occurs near foot strike, predominantly in the foot contact phase, between the back edge of the iliotibial band and the underlying lateral femoral epicondyle. There is a higher incidence of ITBFS in long-distance runners than middle-distance runners and sprinters. The dominant symptom is pain at the lateral side of the knee, aggravated by running. Pain is stinging in nature, and is located around 2 cm above the knee joint line. The treatment is usually non-operative and is based on modification of athletic activity, stretching exercises, and correction of predisposing factors. Again, only in recalcitrant cases of ITBFS, surgery has been advocated.

 

Swimmer’s Shoulders

Swimmer’s shoulder is a musculoskeletal condition that results in symptoms in the area of the front and outer aspect of the shoulder. The onset of symptoms may be associated with impaired posture, shoulder joint mobility, muscular control, or muscle performance. Additionally, training errors such as overuse, misuse, or abuse may also contribute to this condition. In extreme cases, patients with swimmer’s shoulder may have soft tissue injuries of the rotator cuff, long head of the biceps, or glenoid labrum (shock absorber in the shoulder joint). For competitive swimmers and triathletes, it is important to focus on prevention and early treatment, addressing the impairments associated with this condition, and analyzing training methods and stroke mechanics. Often, a comprehensive rehabilitation program usually includes strengthening of the rotator cuff and scapular stabilizers, stretching anterior chest musculature that may be shortened, and implementing activity modification so the athlete can still participate in the sport. In cases where proper technique and rehabilitation are insufficient, a more thorough consult with the doctor may be required to assess for any significant injuries that may then warrant surgery as the last resort.

In conclusion, female endurance sports have come a long way and regular exercise is very important for obtaining general health, positive lifestyle behavior, and positive self-image, as well as learning such skills as teamwork, commitment, and goal setting. The collective differences in anatomical, physiological and conditioning factors may pose a higher health risk to the female athlete but the gender gap is definitely closing. If the symptoms of overuse injury surfaces and persists during training or competition, early diagnosis and a multidisciplinary approach are the essential aspects of the treatment. With a holistic, intergrated and personalized approach to peak performance, injury prevention and treatment, ironwomen can definitely swim bike run the world.

Weight Loss: The Golden Ticket to Osteoarthritis Prevention

My 8 year old daughter confronted me just a few weeks ago about the miracle creams and pills that the television advertisements are showing for arthritis. “There is no need for any more surgery then.” That led me to wonder: if these supplements and creams are the tickets to osteoarthritis prevention, that is really an excellent quick fix. No need to exercising either since running is terrible to our knees and ankles as the stomping trashes the joints. The marathoners must be destroying their knees! But are the professional runners really getting osteoarthritis early and more frequently then the rest of us?

In a study published when I was still doing 2.4km runs in less then 9.05mins, formerly competitive runners did not have higher rates of arthritis in their hips, knees or ankles when compared to nonrunners. (1)What about the regular recreational runners? A more recent study in the American Journal of Preventative Medicine investigated differences in the progression of knee OA in middle- to older-aged runners compared to healthy non-runners over two decades. No association was found. (2) Medical literature generally does not support the idea that running and exercising contributes to the degeneration of articular cartilage (3).

So what does? Whereas once knee osteoarthritis was considered a ‘wear-and-tear’ condition, it is now recognized that knee osteoarthritis exists in the highly metabolic and inflammatory environments of fat tissue. Chemicals known as cytokines associated with adipose tissue may influence osteoarthritis though direct joint degradation or control of local inflammatory processes. Moreover, obesity loads may be detected by mechanical receptors on cartilage cell surfaces triggering production of such chemicals leading to increased arthritis.

Fat (Adipose) tissue, once considered a passive storage of energy, is now recognized as a highly metabolic endocrine organ with the capacity to secrete such inflammatory chemicals which have been detected in the joint fluid and the blood of patients with osteoarthritis. (4,5) As doctors will tell you, inflammation is an important hallmark of osteoarthritis, and we give you anti-inflammatory medications to help reduce the pain and swelling from osteoarthritis. With the cytokines found in fat tissue being an important part of inflammatory processes, prevention can be done by reducing fat tissue where these nasty chemicals are produced. Voila, the golden ticket!

In addition to the nasty chemicals, being overweight also leads to abnormal loads on the joints. Clinical and animal studies of joint loading have provided evidence that abnormal loads can lead to changes in the composition, structure, and mechanical properties of articular cartilage. 6,7,8 Kind of like a watermelon placed on a grape, I guess you get the picture. But weight is not just the whole picture, loss of muscle mass and strength may reduce the shock-absorbing potential of the joint, thereby causing cartilage damage. 9

Pain is the main reason patients see me when they have osteoarthritis. Obesity has been known to be linked to abnormal glucose homeostasis (control) and insulin resistance in the body. In studies of acute pain in trauma and surgery, there is decreased insulin sensitivity.10 In these same studies of induced acute pain, there were increases in circulating concentrations of hormones associated with altered glucose homeostasis. Because obesity is frequently, though not always, associated with insulin resistance, altered glucose homeostasis has an important role related to chronic pain from the arthritis.

We have been searching for miracle drugs to reverse osteoarthritis for a long time to no avail. Of course, weight management, albeit the Golden Ticket to osteoarthritis prevention, may not be the quick fix everyone is looking for but I guess we can also defer to surgery like a knee replacement or an ankle fusion by Orthopaedic Surgeons like myself. We will always be available to help you with that when it comes to that.

Reference:

  1. Konradsen L, Hansen EM, Sondergaard L. Long distance running and osteoarthrosis. Am J Sports Med. Jul-Aug 1990;18(4):379-381.
  2. Chakravarty EF, Hubert HB, Lingala VB, Zatarain E, Fries JF. Long distance running and knee osteoarthritis. A prospective study. Am J Prev Med. Aug 2008;35(2):133-138.
  3. Willick SE, Hansen PA. Running and osteoarthritis. Clin Sports Med. Jul 2010;29(3):417-428.
  4. Dumond H, Presle N, Terlain B, et al. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum 2003; 48:3118–3129.
  5. Chen TH, Chen L, Hsieh MS, et al. Evidence for a protective role for adiponectin in osteoarthritis. Biochimica et Biophysica Acta 2006; 1762:711–718.
  6. Mundermann A, Dyrby CO, Andriacchi TP. Secondary gait changes in patients with medial compartment knee osteoarthritis: increased load at the ankle, knee, and hip during walking. Arthritis Rheum 2005; 52:2835–2844.
  7. Maly MR, Costigan PA, Olney SJ. Contribution of psychosocial and mechanical variables to physical performance measures in knee osteoarthritis. Phys Ther 2005; 85:1318–1328.
  8. Rejeski WJ, Craven T, Ettinger WH Jr, et al. Self-efficacy and pain in disability with osteoarthritis of the knee. J Gerontol B Psychol Sci Soc Sci 1996; 51:24–29.
  9. Bennell KL, Hunt MA, Wrigley TV, et al. Role of muscle in the genesis and management of knee osteoarthritis. Rheum Dis Clin N Am 2008; 34:731–754.
  10. Greisen J, Juhl CB, Grofte T, et al. Acute pain induces insulin resistance in humans. Anesthesiology 2001; 95:578–584.